Parametric Studies of Titania-Supported Gold-Catalyzed Oxidation of Carbon Monoxide

نویسندگان

  • Siewhui Chong
  • Thomas Chung-Kuang Yang
چکیده

This paper remarks the general correlations of the shape and crystallinity of titanium dioxide (TiO₂) support on gold deposition and carbon monoxide (CO) oxidation. It was found that due to the larger rutile TiO₂ particles and thus the pore volume, the deposited gold particles tended to agglomerate, resulting in smaller catalyst surface area and limited gold loading, whilst anatase TiO₂ enabled better gold deposition. Those properties directly related to gold particle size and thus the number of low coordinated atoms play dominant roles in enhancing CO oxidation activity. Gold deposited on anatase spheroidal TiO₂ at photo-deposition wavelength of 410 nm for 5 min resulted in the highest CO oxidation activity of 0.0617 mmol CO/s.gAu (89.5% conversion) due to the comparatively highest catalyst surface area (114.4 m²/g), smallest gold particle size (2.8 nm), highest gold loading (7.2%), and highest Au⁰ content (68 mg/g catalyst). CO oxidation activity was also found to be directly proportional to the Au⁰ content. Based on diffuse reflectance infrared Fourier transform spectroscopy, we postulate that anatase TiO₂-supported Au undergoes rapid direct oxidation whilst CO oxidation on rutile TiO₂-supported Au could be inhibited by co-adsorption of oxygen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Catalytically active gold on ordered titania supportsw

Almost two decades have passed since supported Au nanoparticles were found to be active for CO oxidation. This discovery inspired extensive research addressing the origin of the unique properties of supported Au nanoparticles, the design and synthesis of potentially technical Au catalysts, and the extension of Au catalysis to other reactions. This tutorial review summarises the current understa...

متن کامل

Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties

Gold clusters ranging in diameter from 1 to 6 nanometers have been prepared on single crystalline surfaces of titania in ultrahigh vacuum to investigate the unusual size dependence of the low-temperature catalytic oxidation of carbon monoxide. Scanning tunneling microscopy/spectroscopy (STM/STS) and elevated pressure reaction kinetics measurements show that the structure sensitivity of this rea...

متن کامل

Aerobic methylcyclohexane-promoted epoxidation of stilbene over gold nanoparticles supported on Gd-doped titania.

Aerobic partial oxidations of alkanes and alkenes are important processes of the petrochemical industry. The radical mechanisms involved can be catalyzed by soluble salts of transition metals (Co, Cu, Mn...). We show here that the model methylcyclohexane/stilbene co-oxidation reaction can be efficiently catalyzed at lower temperature by supported gold nanoparticles. The support has little influ...

متن کامل

Catalytic Oxidation of Carbon Monoxide by Cobalt Oxide Catalysts Supported on Oxidized-MWCNT

Cobalt oxide catalysts supported on oxidized multi-walled carbon nanotubes (MWCNT) for the low-temperature catalytic oxidation of carbon monoxide were prepared by an impregnation-ultrasound method. These catalysts were characterized by N2 adsorption/desorption, TEM, XRD, Raman, and H2-TPR methods. The XRD and Raman results indicated that the phase of the synthesized cobalt...

متن کامل

The structure of catalytically active gold on titania.

The high catalytic activity of gold clusters on oxides has been attributed to structural effects (including particle thickness and shape and metal oxidation state), as well as to support effects. We have created well-ordered gold mono-layers and bilayers that completely wet (cover) the oxide support, thus eliminating particle shape and direct support effects. High-resolution electron energy los...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017